Interactions
In general, rose
supports local, complex interactions. While we expect that
most users will take advantage of the hard-coded Koning-Delaroche potential, we
have always written rose
with the expectation that many users will want to
define their own interactions. The classes below make that process more
convenient.
The most basic interaction is affectionately and creatively referred to as:
Interaction
. It supports fixed-energy interactions whose parameter dependece
is affine. The corresponding class, InteractionSpace
, generates a list of
$\ell$-specific Interactions
.
For fixed-energy interactions for which the parameter dependence is non-affine,
we have InteractionEIM
and InteractionEIMSpace
. The classes leverage the
Empirical Interpolation Method (EIM) to render that which was non-affine affine.
For non-affine, energy-dependent interactions, we have
EnergizedInteractionEIM
and EnergizedInteractionEIMSpace
. rose
works with
the energy-scaled Schrödinger equation, so one might think that the scaled
interaction is linear in $1/E$. However, because we also work in the
dimensionless space, $s\equiv kr$, the dependence is more complex. We again rely
on EIM to capture these complexities. (You don't need to know all of that. We
just wanted you to impress you.)
Affine, Fixed-Energy Interactions
Wraps the user-defined interaction into a class that stores several relevant parameters of the problem.
Interaction(ell=0, spin_orbit_term=None, coordinate_space_potential=None, n_theta=None, mu=None, energy=None, k=None, Z_1=0, Z_2=0, R_C=0.0, is_complex=False)
Defines a local, (possibly) complex, affine, fixed-energy interaction.
Creates a local, (possibly) complex, affine, fixed-energy interaction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coordinate_space_potential |
Callable[[float, ndarray], float]
|
V(r, theta) |
None
|
n_theta |
int
|
number of parameters |
None
|
mu |
float
|
reduced mass |
None
|
energy |
float
|
center-of-mass, scattering energy |
None
|
ell |
int
|
angular momentum |
0
|
Z_1 |
int
|
charge of particle 1 |
0
|
Z_2 |
int
|
charge of particle 2 |
0
|
R_C |
float
|
Coulomb "cutoff" radius |
0.0
|
is_complex |
bool
|
Is the interaction complex? |
False
|
spin_orbit_term |
SpinOrbitTerm
|
See Spin-Orbit section. |
None
|
Returns:
Name | Type | Description |
---|---|---|
instance |
Interaction
|
instance of |
Attributes:
Name | Type | Description |
---|---|---|
v_r |
Callable[[float, ndarray], float]
|
coordinate-space potential; $V(r, \alpha)$ |
n_theta |
int
|
number of parameters |
mu |
float
|
reduced mass |
ell |
int
|
angular momentum |
k_c |
float
|
Coulomb momentum; $k\eta$ |
is_complex |
bool
|
Is this a complex potential? |
spin_orbit_term |
SpinOrbitTerm
|
Source code in src/rose/interaction.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|
E(alpha)
Energy. Implemented as a function to support energy
emulation (where the energy could be a part of the parameter vector,
alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
Energy |
float
|
in [MeV] |
Source code in src/rose/interaction.py
161 162 163 164 165 166 167 168 169 170 171 172 |
|
basis_functions(rho_mesh)
In general, we approximate the potential as
$\hat{U} = \sum_{j} \beta_j(\alpha) u_j$
For affine interactions (like those defined in this class) the basis functions (or "pillars), $u_j$, are just the "naked" parts of the potential. As seen below, it is assumed that the $\beta_j(\alpha)$ coefficients are just the affine parameters, $\alpha$, themselves.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rho_mesh |
ndarray
|
discrete $\rho$ values at which the potential is going to be evaluated |
required |
Returns:
Name | Type | Description |
---|---|---|
value |
ndarray
|
values of the scaled potential at provided $\rho$ points |
Source code in src/rose/interaction.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
bundle_gcoeff_args(alpha)
Bundles parameters for the Schrödinger equation
Returns:
Type | Description |
---|---|
args (tuple) : all the arguments to g_coeff except for $s$ |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray)
|
the parameters for the interaction |
required |
Source code in src/rose/interaction.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
coefficients(alpha)
As noted in the basis_functions
documentation, the coefficients
for affine interactions are simply the parameter values. The inverse of
the momentum is also returned to support energy emulation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter point |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
tuple
|
inverse momentum and coefficients |
Source code in src/rose/interaction.py
134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
coulomb_cutoff(alpha)
Coulomb cutoff. Implemented as a function to support energy emulation
(where the energy/momentum could be a part of the parameter vector,
alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
R_C |
float
|
Coulomb cutoff |
Source code in src/rose/interaction.py
199 200 201 202 203 204 205 206 207 208 209 210 |
|
eta(alpha)
Sommerfeld parameter. Implemented as a function to support energy
emulation (where the energy could be a part of the parameter vector,
alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
eta |
float
|
Sommerfeld parameter |
Source code in src/rose/interaction.py
148 149 150 151 152 153 154 155 156 157 158 159 |
|
momentum(alpha)
Momentum. Implemented as a function to support energy emulation
(where the energy/momentum could be a part of the parameter vector,
alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
k |
float
|
center-of-mass, scattering momentum |
Source code in src/rose/interaction.py
174 175 176 177 178 179 180 181 182 183 184 185 |
|
reduced_mass(alpha)
Mu. Implemented as a function to support energy emulation (where mu could be a
part of the parameter vector, alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
Mu |
float
|
in [MeV/c^2] |
Source code in src/rose/interaction.py
187 188 189 190 191 192 193 194 195 196 197 |
|
tilde(s, alpha)
Scaled potential, $\tilde{U}(s, \alpha, E)$.
- Does not include the Coulomb term.
- $E = E_{c.m.}$;
[E] = MeV = [v_r]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s |
float
|
mesh point; $s = pr/\hbar$ |
required |
alpha |
ndarray
|
the varied parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
u_tilde |
float | complex
|
value of scaled interaction |
Source code in src/rose/interaction.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
InteractionSpace(l_max=15, interaction_type=Interaction, **kwargs)
Generates a list of $\ell$-specific interactions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
l_max |
int
|
maximum angular momentum |
15
|
interaction_type |
Type
|
type of |
Interaction
|
kwargs |
dict
|
arguments to constructor of |
{}
|
Returns:
Name | Type | Description |
---|---|---|
instance |
InteractionSpace
|
instance of InteractionSpace |
Attributes:
Name | Type | Description |
---|---|---|
interaction |
list
|
list of |
l_max |
int
|
partial wave cutoff |
type |
Type
|
interaction type |
Source code in src/rose/interaction.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
couplings(l)
For a spin-1/2 nucleon scattering off a spin-0 nucleus, there are maximally 2 different total angular momentum couplings: l+1/2 and l-1/2.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
l |
int
|
angular momentum |
required |
Returns:
Name | Type | Description |
---|---|---|
couplings |
list
|
epectation value of l dot s |
Source code in src/rose/interaction.py
279 280 281 282 283 284 285 286 287 288 289 290 |
|
Non-Affine, Fixed-Energy Interactions
Interactions that leverage the Empirical Interpolation Method (EIM) to allow the emulation of parameters in which the coordinate-space potential is not affine.
InteractionEIM(training_info=None, n_basis=None, expl_var_ratio_cutoff=None, explicit_training=False, n_train=1000, rho_mesh=DEFAULT_RHO_MESH, match_points=None, method='collocation', **kwargs)
Bases: Interaction
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_info |
ndarray
|
Either (1) parameters bounds or (2) explicit training points If (1): This is a 2-column matrix. The first column are the lower bounds. The second are the upper bounds. Each row maps to a single parameter. If (2): This is an MxN matrix. N is the number of parameters. M is the number of samples. |
None
|
n_basis |
int
|
min number of states in the expansion |
None
|
expl_var_ratio_cutoff |
float)
|
the cutoff in sv2/sum(sv2), sv being the singular values, at which the number of kept bases is chosen |
None
|
explicit_training |
bool
|
Is training_info (1) or (2)? (1) is default |
False
|
n_train |
int
|
How many snapshots to generate? Ignored if explicit_training is True. |
1000
|
rho_mesh |
ndarray
|
coordinate-space points at which the interaction is generated (used for training) |
DEFAULT_RHO_MESH
|
match_points |
ndarray
|
$\rho$ points where agreement with the true potential is enforced |
None
|
method |
str)
|
'collocation' or 'least-squares'. If 'collocation', match_points must be the same length as n_basis; otherwise match_points can be any size. |
'collocation'
|
kwargs |
dict
|
kwargs to |
{}
|
Attributes:
Name | Type | Description |
---|---|---|
s_mesh |
ndarray
|
$s$ points |
singular_values |
ndarray
|
|
snapshots |
ndarray
|
pillars, columns of |
match_indices |
ndarray
|
indices of points in $\rho$ mesh that are matched to the true potential |
match_points |
ndarray
|
points in $\rho$ mesh that are matched to the true potential |
Ainv |
ndarray
|
inverse of A matrix (Ax = b) |
Source code in src/rose/interaction_eim.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
basis_functions(s_mesh)
$u_j$ in $\tilde{U} \approx \hat{U} \equiv \sum_j \beta_j(\alpha) u_j$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s_mesh |
ndarray
|
$s$ mesh points |
required |
Returns:
Name | Type | Description |
---|---|---|
u_j |
ndarray
|
"pillars" (MxN matrix; M = number of mesh points; N = number of pillars) |
Source code in src/rose/interaction_eim.py
176 177 178 179 180 181 182 183 184 185 186 |
|
coefficients(alpha)
Computes the EIM expansion coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
coefficients |
ndarray
|
EIM expansion coefficients |
Source code in src/rose/interaction_eim.py
149 150 151 152 153 154 155 156 157 158 159 160 |
|
percent_explained_variance(n=None)
Returns:
Type | Description |
---|---|
(float) : percent of variance explained in the training set by the first n_basis principal |
|
components |
Source code in src/rose/interaction_eim.py
188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
tilde_emu(alpha)
Emulated interaction = $\hat{U}(s, \alpha, E)$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
u_hat |
ndarray
|
emulated interaction |
Source code in src/rose/interaction_eim.py
162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
InteractionEIMSpace(l_max=15, interaction_type=InteractionEIM, **kwargs)
Bases: InteractionSpace
Generates a list of $\ell$-specific, EIMed interactions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
interaction_args |
list
|
positional arguments for constructor of |
required |
interaction_kwargs |
dict
|
arguments to constructor of |
required |
l_max |
int
|
maximum angular momentum |
15
|
interaction_type |
Type
|
type of |
InteractionEIM
|
Returns:
Name | Type | Description |
---|---|---|
instance |
InteractionEIMSpace
|
instance of InteractionEIMSpace |
Attributes:
Name | Type | Description |
---|---|---|
interaction |
list
|
list of |
l_max |
int
|
partial wave cutoff |
type |
Type
|
interaction type |
Source code in src/rose/interaction_eim.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
Non-Affine, Energy-Emulated Interactions
Defines a class for "affinizing" Interactions using the Empirical Interpolation Method (EIM).
EnergizedInteractionEIM(**kwargs)
Bases: InteractionEIM
Extension of InteractionEIM that supports energy, mu and k as parameters. Expected format for alpha is [energy, mu, k, *rest_of_params]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kwargs |
dict
|
arguments to InteractionEIM. Note; the |
{}
|
Attributes:
Name | Type | Description |
---|---|---|
singular_values |
ndarray
|
|
snapshots |
ndarray
|
pillars, columns of |
match_indices |
ndarray
|
indices of points in $\rho$ mesh that are matched to the true potential |
match_points |
ndarray
|
points in $\rho$ mesh that are matched to the true potential |
Ainv |
ndarray
|
inverse of A matrix (Ax = b) |
Source code in src/rose/energized_interaction_eim.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|
E(alpha)
Energy. Implemented as a function to support energy emulation (where the energy
could be a part of the parameter vector, alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
Energy |
float
|
in [MeV] |
Source code in src/rose/energized_interaction_eim.py
126 127 128 129 130 131 132 133 134 135 136 |
|
basis_functions(s_mesh)
$u_j$ in $\tilde{U} \approx \hat{U} \equiv \sum_j \beta_j(\alpha) u_j$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s_mesh |
ndarray
|
$s$ mesh points |
required |
Returns:
Name | Type | Description |
---|---|---|
u_j |
ndarray
|
"pillars" (MxN matrix; M = number of mesh points; N = number of pillars) |
Source code in src/rose/energized_interaction_eim.py
102 103 104 105 106 107 108 109 110 111 112 |
|
bundle_gcoeff_args(alpha)
Bundles parameters for the Schrödinger equation
Returns:
Type | Description |
---|---|
args (tuple) : all the arguments to g_coeff except for $s$ |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray)
|
the parameters for the interaction |
required |
Source code in src/rose/energized_interaction_eim.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
coefficients(alpha)
Computes the EIM expansion coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
coefficients |
ndarray
|
EIM expansion coefficients |
Source code in src/rose/energized_interaction_eim.py
62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
eta(alpha)
Returns the Sommerfeld parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
eta |
float
|
Sommerfeld parameter |
Source code in src/rose/energized_interaction_eim.py
76 77 78 79 80 81 82 83 84 85 86 |
|
momentum(alpha)
Center-of-mass, scattering momentum. Implemented as a function to support energy
emulation (where k could be a part of the parameter vector, alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
k |
float
|
momentum |
Source code in src/rose/energized_interaction_eim.py
114 115 116 117 118 119 120 121 122 123 124 |
|
reduced_mass(alpha)
Mu. Implemented as a function to support energy emulation (where mu could be a
part of the parameter vector, alpha
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
parameter vector |
required |
Returns:
Name | Type | Description |
---|---|---|
Mu |
float
|
in [MeV/c^2] |
Source code in src/rose/energized_interaction_eim.py
138 139 140 141 142 143 144 145 146 147 148 |
|
tilde(s, alpha)
Computes the energy-scaled interaction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s |
float
|
mesh point |
required |
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
u_tilde |
float | complex
|
energy-scaled interaction |
Source code in src/rose/energized_interaction_eim.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
tilde_emu(s, alpha)
Emulated interaction = $\hat{U}(s, \alpha, E)$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
u_hat |
ndarray
|
emulated interaction |
Source code in src/rose/energized_interaction_eim.py
88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
EnergizedInteractionEIMSpace(l_max=15, interaction_type=EnergizedInteractionEIM, **kwargs)
Bases: InteractionEIMSpace
Generates a list of $\ell$-specific interactions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
interaction_args |
list
|
positional arguments for constructor of |
required |
interaction_kwargs |
dict
|
arguments to constructor of |
required |
l_max |
int
|
maximum angular momentum |
15
|
interaction_type |
Type
|
type of |
EnergizedInteractionEIM
|
Returns:
Name | Type | Description |
---|---|---|
instance |
EnergizedInteractionEIMSpaceInteractionSpace
|
instance of EnergizedInteractionEIMSpace |
Attributes:
Name | Type | Description |
---|---|---|
interaction |
list
|
list of |
l_max |
int
|
partial wave cutoff |
type |
Type
|
interaction type |
Source code in src/rose/energized_interaction_eim.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
Spin-Orbit
Defines a class to package the spin-orbit term.
SpinOrbitTerm(spin_orbit_potential=None, l_dot_s=None)
Spin-orbit interaction
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spin_orbit_potential |
Callable[[float, ndarray, float], float]
|
coordinate-space, spin-orbit potential |
None
|
l_dot_s |
float
|
$2\ell\cdot s$ matrix elements, $+\ell$ or $-\ell-1$ |
None
|
Attributes:
Name | Type | Description |
---|---|---|
l_dot_s |
float
|
$2\ell\cdot s$ matrix elements, $+\ell$ or $-\ell-1$ |
spin_orbit_potential |
float
|
(Callable[[float, ndarray, float],float]): coordinate-space, spin-orbit potential |
Source code in src/rose/spin_orbit.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
Koning-Delaroche
The Koning-Delaroche potential is a common optical potential for nuclear scattering. It is provided here in simplified form specifically to address this need.
See the Koning-Delaroche paper for details. Equation references are with respect to (w.r.t.) this paper.
EnergizedKoningDelaroche(training_info, l_max=20, n_basis=8, explicit_training=False, n_train=1000, rho_mesh=DEFAULT_RHO_MESH, match_points=None, method='collocation', **kwargs)
Bases: EnergizedInteractionEIMSpace
Wraps the Koning-Delaroche potential into a rose
-friendly class.
Saves system-specific information. Allows the user to emulate across
energies.
- Does not (yet) support Coulomb.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu |
float
|
reduced mass of the 2-body system |
required |
ell |
int
|
angular momentum |
required |
training_info |
ndarray
|
either (1) parameters bounds or (2) explicit training points If (1): This is a 2-column matrix. The first column are the lower bounds. The second are the upper bounds. Each row maps to a single parameter. If (2): This is an MxN matrix. N is the number of parameters. M is the number of samples. |
required |
n_basis |
int
|
number of basis states to use for EIM |
8
|
explicit_training |
bool
|
True implies training_info case (2); False implies (1) |
False
|
n_train |
int
|
how many training samples to use |
1000
|
rho_mesh |
ndarray
|
$\rho$ (or $s$) grid values |
DEFAULT_RHO_MESH
|
match_points |
ndarray
|
$\rho$ points at which we demand the EIMed potential match the true potential |
None
|
Returns:
Name | Type | Description |
---|---|---|
instance |
EnergizedKoningDelaroche
|
instance of the class |
Source code in src/rose/koning_delaroche.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
KDGlobal(projectile, param_fpath=None)
Global optical potential in Koning-Delaroche form.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
projectile |
neutron or proton? |
required | |
param_fpath |
path to json file encoding parameter values. |
None
|
Source code in src/rose/koning_delaroche.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
get_params(A, Z, mu, E_lab, k)
Calculates Koning-Delaroche global neutron-nucleus OMP parameters for given A, Z, and COM-frame energy, returns params in form useable by EnergizedKoningDelaroche
Source code in src/rose/koning_delaroche.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
|
KoningDelaroche(energy, training_info, mu, l_max=20, n_basis=8, explicit_training=False, n_train=1000, rho_mesh=DEFAULT_RHO_MESH, match_points=None, method='collocation', **kwargs)
Bases: InteractionEIMSpace
Koning-Delaroche potential (without energy-dependent strength
coefficients) for arbitrary systems defined by mu
, energy
, ell
, Z_1
,
and Z_2
.
Wraps the Koning-Delaroche potential into a rose
-friendly class.
Saves system-specific information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu |
float
|
reduced mass of the 2-body system |
required |
ell |
int
|
angular momentum |
required |
energy |
float
|
center-of-mass, scattering energy |
required |
training_info |
ndarray
|
either (1) parameters bounds or (2) explicit training points If (1): This is a 2-column matrix. The first column are the lower bounds. The second are the upper bounds. Each row maps to a single parameter. If (2): This is an MxN matrix. N is the number of parameters. M is the number of samples. |
required |
n_basis |
int
|
number of basis states to use for EIM |
8
|
explicit_training |
bool
|
True implies training_info case (2); False implies (1) |
False
|
n_train |
int
|
how many training samples to use |
1000
|
rho_mesh |
ndarray
|
$\rho$ (or $s$) grid values |
DEFAULT_RHO_MESH
|
match_points |
ndarray
|
$\rho$ points at which we demand the EIMed potential match the true potential |
None
|
Returns:
Name | Type | Description |
---|---|---|
instance |
KoningDelaroche
|
instance of the class |
Source code in src/rose/koning_delaroche.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
KD(r, E, v1, v2, v3, v4, w1, w2, d1, d2, d3, Ef, Rv, av, Rd, ad)
Koning-Delaroche without the spin-orbit terms - Eq. (1)
Source code in src/rose/koning_delaroche.py
68 69 70 71 72 73 74 75 |
|
KD_simple(r, alpha)
simplified Koning-Delaroche without the spin-orbit terms
Take Eq. (1) and remove the energy dependence of the coefficients.
Source code in src/rose/koning_delaroche.py
95 96 97 98 99 100 101 102 103 104 105 106 |
|
KD_simple_so(r, alpha, lds)
simplified Koning-Delaroche spin-orbit terms
Take Eq. (1) and remove the energy dependence of the coefficients.
lds: l • s = 1/2 * (j(j+1) - l(l+1) - s(s+1))
Source code in src/rose/koning_delaroche.py
109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
Vso(E, vso1, vso2, Ef)
energy-dependent, spin-orbit strength --- real term, Eq. (7)
Source code in src/rose/koning_delaroche.py
50 51 52 53 |
|
Vv(E, v1, v2, v3, v4, Ef)
energy-dependent, volume-central strength - real term, Eq. (7)
Source code in src/rose/koning_delaroche.py
30 31 32 33 |
|
Wd(E, d1, d2, d3, Ef)
energy-dependent, surface-central strength - imaginary term (no real term), Eq. (7)
Source code in src/rose/koning_delaroche.py
42 43 44 45 46 47 |
|
Wso(E, wso1, wso2, Ef)
energy-dependent, spin-orbit strength --- imaginary term, Eq. (7)
Source code in src/rose/koning_delaroche.py
56 57 58 59 |
|
Wv(E, w1, w2, Ef)
energy-dependent, volume-central strength - imaginary term, Eq. (7)
Source code in src/rose/koning_delaroche.py
36 37 38 39 |
|
decompose_alpha(alpha)
Splits the parameter-space vector into non-spin-orbit and spin-orbit parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
ndarray
|
interaction parameters |
required |
Returns:
Name | Type | Description |
---|---|---|
parameters |
tuple
|
2-tuple of non-spin-orbit ( |
Source code in src/rose/koning_delaroche.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
delta_VC(E, Vcbar, v1, v2, v3, v4, Ef)
energy dependent Coulomb correction term, Eq. 23
Source code in src/rose/koning_delaroche.py
62 63 64 65 |
|